23CS22P1 - OPERATING SYSTEMS LAB

(CSE)

Course Category:	Professional Core	Credits:	1.5
Course Type:	Practical	Lecture-Tutorial- Practical:	0-0-3
Prerequisite:	 Understanding of fundamental operating system concepts such as processes, threads, scheduling algorithms, synchronization, deadlock handling, memory Management (paging, segmentation), file systems, and I/O management. 	Sessional Evaluation: Univ. Exam Evaluation: Total Marks:	70
Students undergoing this course are expected:			
Objectives:	 Provide insights into system calls, file systems, semaphores, Develop and debug CPU Scheduling algorithms, page replacement algorithms, thread implementation Implement Bankers Algorithms to Avoid the Dead Lock 		

	Upon successful completion of the course, the students will be able to:		
Course Outcomes	CO1 Trace different CPU Scheduling algorithms (L2).		
	CO2 Implement Bankers Algorithms to Avoid the Dead Lock (L3).		
	CO3 Evaluate Page replacement algorithms (L5).		
	CO4 Illustrate the file organization techniques (L4).		
	CO5 Illustrate Inter process Communication and concurrent execution of threads (L4)		
Course Content	Sample Experiments		
	1. Practicing of Basic UNIX Commands.		
	2. Write programs using the following UNIX operating system calls fork, exec, getpid, exit, wait, close, stat, opendir and readdir		
	3. Simulate UNIX commands like cp, ls, grep, etc.,		
	4. Simulate the following CPU scheduling algorithmsa) FCFS b) SJF c) Priority d) Round Robin		
	5. Write a program to illustrate concurrent execution of threads using pthreads library.		
	6. Write a program to solve producer-consumer problem using Semaphores.		
	7. Implement the following memory allocation methods for fixed partitiona) First fit b) Worst fit c) Best fit		
	8. Simulate the following page replacement algorithmsa) FIFO b) LRU c) LFU		

	9. Simulate Paging Technique of memory management.10. Implement Bankers Algorithm for Dead Lock avoidance and prevention	
	11. Simulate the following file allocation strategiesa) Sequential b) Indexed c) Linked	
Text Books & References Books	 REFERENCE BOOKS: Operating System Concepts, Silberschatz A, Galvin P B, Gagne G, 10th Edition, Wiley, 2018. Modern Operating Systems, Tanenbaum A S, 4th Edition, Pearson, 2016 Operating Systems -Internals and Design Principles, Stallings W, 9th edition, Pearson, 2018 	
	 Pearson, 2018 4. Operating Systems: A Concept Based Approach, D.M Dhamdhere, 3rd Edition, McGraw-Hill, 2013 	
E-Resources	 https://www.cse.iitb.ac.in/~mythili/os/ http://peterindia.net/OperatingSystems.html 	